Learning Topological Constraints in Self-Organizing Map

نویسندگان

  • Guénaël Cabanes
  • Younès Bennani
چکیده

The Self-Organizing Map (SOM) is a popular algorithm to analyze the structure of a dataset. However, some topological constraints of the SOM are fixed before the learning and may not be relevant regarding to the data structure. In this paper we propose to improve the SOM performance with a new algorithm which learn the topological constraints of the map using data structure information. Experiments on artificial and real databases show that algorithm achieve better results than SOM. This is not the case with trivial topological constraint relaxation because of the high increase of the Topological error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developments and Applications of the Self-organizing Map and Related Algorithms

In this paper the basic principles and developments of an unsu-pervised learning algorithm, the Self-Organizing Map (SOM) and a supervised learning algorithm, the Learning Vector Quantization (LVQ) are explained. Some practical applications of the algorithms in data analysis, data visual-ization and pattern recognition tasks are mentioned. In the end of the paper new results are reported about ...

متن کامل

Topological local principal component analysis

In help of the Kohonen’s self-organizing maps we present a topological local principal component analysis model which is capable of exploiting both the global topological structure and each local cluster structure. A newly proposed self-organizing strategy that can enhance the learning speed is introduced to train the model. c © 2003 Elsevier B.V. All rights reserved.

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Multi-Scale Model-Based Skeletonization of Object Shapes Using Self-Organizing Maps

In this paper, a new skeletonization algorithm suitable for the skeletonization of sparse shape is described. It is based on Self-Organizing Maps (SOM) – a class of neural networks with unsupervised learning. The so-called structured SOM with local shape attributes such as scale and connectivity of vertices are used to determine the object shape in the form of piecewise linear skeletons. The lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010